Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Ann Rheum Dis ; 81(8): 1189-1193, 2022 08.
Article in English | MEDLINE | ID: covidwho-1741595

ABSTRACT

OBJECTIVES: COVID-19 vaccination often triggers a constellation of transitory inflammatory symptoms. Gout is associated with several comorbidities linked to poor outcomes in COVID-19, and gout flares can be triggered by some vaccinations. We analysed the risk of gout flares in the first 3 months after COVID-19 vaccination with inactivated virus, and whether colchicine can prevent gout flares following post-COVID-19 vaccination. METHODS: A clinical delivery population-based cross-sectional study was conducted in the Gout Clinic at the Affiliated Hospital of Qingdao University between February and October 2021. Study participants were selected using a systematic random sampling technique among follow-up patients with gout. We collected data, including vaccinations and potential risk factors, using a combination of interviews, health QR codes and medical records. Logistic regression was used to adjust for covariates. RESULTS: We enrolled 549 gout participants (median age 39 years, 84.2% vaccinated). For the 462 patients who received COVID-19 vaccine, 203 (43.9%) developed at least one gout flare in the 3 months after vaccination. Most of these flares were experienced within 1 month after the first (99/119 (83.2%)) or second (70/115 (60.9%)) dose of vaccine. Compared with unvaccinated participants, COVID-19 vaccination was associated with higher odds of gout flare within 3 months (adjusted OR 6.02; 95% CI 3.00 to 12.08). Colchicine use was associated with 47% less likelihood of postvaccine gout flare. CONCLUSION: COVID-19 vaccination was associated with increased odds of gout flare, which developed mainly in month 1 after each vaccine dose, and was negatively associated with colchicine prophylaxis.


Subject(s)
COVID-19 Vaccines , COVID-19 , Colchicine , Gout Suppressants , Gout , Symptom Flare Up , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Colchicine/therapeutic use , Cross-Sectional Studies , Gout/drug therapy , Gout Suppressants/therapeutic use , Humans , Vaccination , Vaccines/therapeutic use
2.
Research (Wash D C) ; 2022: 9781758, 2022.
Article in English | MEDLINE | ID: covidwho-1699468

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has evolved many variants with stronger infectivity and immune evasion than the original strain, including Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Iota, Lambda, and 21H strains. Amino acid mutations are enriched in the spike protein of SARS-CoV-2, which plays a crucial role in cell infection. However, the impact of these mutations on protein structure and function is unclear. Understanding the pathophysiology and pandemic features of these SARS-CoV-2 variants requires knowledge of the spike protein structures. Here, we obtained the spike protein structures of 10 main globally endemic SARS-CoV-2 strains using AlphaFold2. The clustering analysis based on structural similarity revealed the unique features of the mainly pandemic SARS-CoV-2 Delta variants, indicating that structural clusters can reflect the current characteristics of the epidemic more accurately than those based on the protein sequence. The analysis of the binding affinities of ACE2-RBD, antibody-NTD, and antibody-RBD complexes in the different variants revealed that the recognition of antibodies against S1 NTD and RBD was decreased in the variants, especially the Delta variant compared with the original strain, which may induce the immune evasion of SARS-CoV-2 variants. Furthermore, by virtual screening the ZINC database against a high-accuracy predicted structure of Delta spike protein and experimental validation, we identified multiple compounds that target S1 NTD and RBD, which might contribute towards the development of clinical anti-SARS-CoV-2 medicines. Our findings provided a basic foundation for future in vitro and in vivo investigations that might speed up the development of potential therapies for the SARS-CoV-2 variants.

3.
Research (Washington, D.C.) ; 2021, 2021.
Article in English | EuropePMC | ID: covidwho-1652386

ABSTRACT

The spread of the latest SARS-CoV-2 variant Omicron is particularly concerning because of the large number of mutations present in its genome and lack of knowledge about how these mutations would affect the current SARS-CoV-2 vaccines and treatments. Here, by performing phylogenetic analysis using the Omicron spike (S) protein sequence, we found that the Omicron S protein presented the longest evolutionary distance in relation to the other SARS-CoV-2 variants. We predicted the structures of S, M, and N proteins of the Omicron variant using AlphaFold2 and investigated how the mutations have affected the S protein and its parts, S1 NTD and RBD, in detail. We found many amino acids on RBD were mutated, which may influence the interactions between the RBD and ACE2, while also showing the S309 antibody could still be capable of neutralizing Omicron RBD. The Omicron S1 NTD structures display significant differences from the original strain, which could lead to reduced recognition by antibodies resulting in potential immune escape and decreased effectiveness of the existing vaccines. However, this study of the Omicron variant was mainly limited to structural predictions, and these findings should be explored and verified by subsequent experiments. This study provided basic data of the Omicron protein structures that lay the groundwork for future studies related to the SARS-CoV-2 Omicron variant.

SELECTION OF CITATIONS
SEARCH DETAIL